Gigahertz-Optik Logo

Quick Contact

Gigahertz Optik GmbH (Headquarter)
Phone: +49 (0)8193-93700-0
info@gigahertz-optik.de

Gigahertz-Optik, Inc. (US office)
Phone: +1-978-462-1818
info-us@gigahertz-optik.com

Get a Quote or Compare Products

You can add products to the watchlist and compare them with one another or send us an inquiry. There are watchlist symbols on product pages and product tables for this purpose.

7.8 LED Measurements

Presently, a fast and steady large scale technological change is taking place: The traditional incandescent bulb and energy saving bulbs are replaced by so called light emitting diodes or LEDs. Over the past decade, LEDs have caught up in efficiency and now offer an economical alternative to incandescent bulbs even for bright signal lamps such as traffic and automotive lighting.

LED technics are changing

An LED can be designed to emit light of only the desired color. Since the emission color depends on the spectral distribution of the LED, there is a certain demand for LEDs with identical specifications. LEDs therefore have to be selected according to their specifications due to the tolerances in the production. This procedure is called LED binning. In this process, very fast and precise spectral LED measurements have to be performed in order to determine the color coordinates and absolute radiometric intensity (e.g. luminous flux or radiant power) accurate. These tasks are achieved through optimized spectral radiometers that use diode arrays, so called array-spectroradiometers. Speed of measurement and robustes are of course key parameters beside the optical performance.

A typical LED has a lifetime of 100,000 hours (compared to about 1000 hours for incandescent bulbs) thus drastically reducing the need for maintenance, and often leading to significant overall cost reduction when LEDs are used in the place of traditional lighting. As an example, in the late 1990’s the city of Denver had replaced some 20000 incandescent bulbs in traffic light signals with LED devices. Today almost every new optical radiation application is driven by LEDs.

See our LED measurement systems and products in our General and Special Lighting applications:

See our LED measuring devices in our LED manufacturing and assembly application page:

In our technical article about LED and VCSEL measurements and testing you can find information about standardization, technical references like CIE technical reports and all important LED light meter specifications and characterizations.

Due to the Ecodesign Directive limits for Pst and SVM are stated in the EU. Also in other countries regulations are ongoing. Resulting the measurement of flicker (Temporal Light Artefacts = TLA represents a visibility measure, Temporal Light Modulation = TLM represents a pure description of the waveform) is an important task. Especially low measurement uncertainties are important for a proper conformity assessment. More information can be found in our technical article about LED Flicker TLA/TLM measurements. See also our All-In One LED Flicker Meter BTS256-EF and Modular Flicker Meter PFL-200.

For universal LED spectral lighting measurements we recommend our presentation about Spectral light meters for accurate measurements of LED lighting.

Polychromatic vs. Monochromatic Optical Radiation

The laser is the most commonly encountered monochromatic source. Because of its monochromatic and coherent radiation, high power intensity, fast modulation frequency, and beam orientated emission characteristics, the laser is the primary source used in fiber optic communication systems, range finders, interferometers, alignment systems, profile scanners, laser scanning microscopes, and many other optical systems.

Traditional monochromatic radiometric applications are found in the range of optical spectroscopy with narrow band-pass filtered detectors and scanning monochromators used as monochromatic detection systems or monochromatic light sources.

Optical radiation describes the segment of electromagnetic radiation from λ = 100 nm to λ = 1 mm. Most lasers used in measurement equipment and fiber optic telecommunication systems work predominantly in the 200 nm to 1800 nm wavelength range.

Because of the monochromatic emission spectrum and fixed output wavelength, detectors used to measure laser power do not need a radiometric broadband characteristic. This means that the typical spectral sensitivity characteristic of Si or InGaAs photodiodes can be used without requiring spectral correction.

For absolute power measurements, the bare detector’s spectral response can be calibrated at a single wavelength or over its complete spectral range (typically done in 10 nm increments).

The corresponding calibration factor for that specific wavelength is selected when making the laser power measurement. Some meters offer the capability of selecting a wavelength by menu on the display. The meter then calculates the reading by applying the calibration factor for the wavelength selected and displays the measurement result.

There are two typical measurement strategies for laser power detection:

  • Lasers with collimated (parallel) beams are typically measured with a flat-field detector whose active size is larger than the laser beam diameter. Because of the high power of lasers, the responsivity of the detector may have to be reduced by an attenuation filter. However, there is a risk of measurement errors due to polarization effects, surface reflections from optical surfaces in the light path and misalignment of the beam on the detector.
  • Lasers with non-collimated (divergent) beams cannot be measured with a flatfield detector because of the different angles of incidence. The power output of these lasers is typically measured using detectors combined with an integrating sphere that collects all incoming radiation independent of the angle of incidence. The following are more unique features offered by the integrating sphere:
    • Through multiple internal reflections, the sphere offers high attenuation for high power measurements. The maximum power is limited by the sphere’s upper operating temperature limit.
    • In addition, the multiple internal reflections prevent measurement errors caused by polarization effects with flat-field detectors.
    • The sphere port diameter can be enlarged by increasing the sphere diameter thus enabling measurement of larger diameter beams
  • Laser Stray-light: Although very useful, laser radiation can pose a health risk to the human eye. Even stray-light from lasers may be hazardous due to the typically high power levels. The EN 60825 standard describes the risk and measurement methods for risk classification. Laser stray-light can be assessed using a detector head with a 7 mm diameter free aperture to mimic the open pupil.

See our laser measuring systems for laser power, laser energy and laser waveform: